Abstract

Estimating damage in structural systems is a challenging problem due to the complexity of the likelihood function describing the observed data. From a Bayesian perspective a complicated likelihood means efficient sampling of the posterior distribution is difficult and standard Markov Chain Monte Carlo samplers may no longer be sufficient. This work describes a population-based Markov Chain Monte Carlo approach for efficient sampling of the damage parameter posterior distributions. The approach is shown to accurately estimate the state of damage in a cracked plate structure using simulated, free-decay response data. The use of this approach in identifying structural damage has not previously been explored.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.