Abstract

This letter proposes a low-computational Bayesian algorithm for noisy sparse recovery in the context of one bit compressed sensing with sensing matrix perturbation. The proposed algorithm which is called BHT-MLE comprises a sparse support detector and an amplitude estimator. The support detector utilizes Bayesian hypothesis test, while the amplitude estimator uses an ML estimator which is obtained by solving a convex optimization problem. Simulation results show that BHT-MLE algorithm offers more reconstruction accuracy than that of an ML estimator (MLE) at a low computational cost.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.