Abstract

Hidden Markov models (HMMs) are valuable tools for analyzing longitudinal data due to their capability to describe dynamic heterogeneity. Conventional HMMs typically assume that the number of hidden states (i.e., the order of HMMs) is known or predetermined through criterion-based methods. However, prior knowledge about the order is often unavailable, and a pairwise comparison using criterion-based methods becomes increasingly tedious and computationally demanding when the model space enlarges. A few studies have considered simultaneously performing order selection and parameter estimation under the frequentist framework. Still, they focused only on homogeneous HMMs and thus cannot accommodate situations where potential covariates affect the between-state transition. This study proposes a Bayesian double-penalized (BDP) procedure to conduct a simultaneous order selection and parameter estimation for heterogeneous HMMs. We develop a novel Markov chain Monte Carlo algorithm coupled with an efficient adjust-bound reversible jump scheme to address the challenges in updating the order. Simulation studies show that the proposed BDP procedure considerably outperforms the commonly used criterion-based methods. An application to the Alzheimer’s Disease Neuroimaging Initiative study further confirms the utility of the proposed method. Supplementary materials for this article are available online.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.