Abstract
Spatial patterns are common in infectious disease epidemiology. Disease mapping is essential to infectious disease surveillance. Under a group testing protocol, biomaterial from multiple individuals is physically combined into a pooled specimen, which is then tested for infection. If the pool tests negative, all contributing individuals are generally assumed to be uninfected. If the pool tests positive, the individuals are usually retested to determine who is infected. When the prevalence of infection is low, group testing provides significant cost savings over traditional individual testing by reducing the number of tests required. However, the lack of statistical methods capable of producing maps from group testing data has limited the use of group testing in disease mapping. We develop a Bayesian methodology that can simultaneously map disease prevalence using group testing data and identify risk factors for infection. We illustrate its real-world utility using two datasets from vector-borne disease surveillance.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.