Abstract

Precision medicine relies on the idea that, for a particular targeted agent, only a subpopulation of patients is sensitive to it and thus may benefit from it therapeutically. In practice, it is often assumed based on preclinical data that a treatment-sensitive subpopulation is known, and moreover that the agent is substantively efficacious in that subpopulation. Due to important differences between preclinical settings and human biology, however, data from patients treated with a new targeted agent often show that one or both of these assumptions are false. This paper provides a Bayesian randomized group sequential enrichment design that compares an experimental treatment to a control based on survival time and uses early response as an ancillary outcome to assist with adaptive variable selection and enrichment. Initially, the design enrolls patients under broad eligibility criteria. At each interim decision, submodels for regression of response and survival time on a baseline covariate vector and treatment are fit; variable selection is used to identify a covariate subvector that characterizes treatment-sensitive patients and determines a personalized benefit index, and comparative superiority and futility decisions are made. Enrollment of each cohort is restricted to the most recent adaptively identified treatment-sensitive patients. Group sequential decision cutoffs are calibrated to control overall type I error and account for the adaptive enrollment restriction. The design provides a basis for precision medicine by identifying a treatment-sensitive subpopulation, if it exists, and determining whether the experimental treatment is superior to the control in that subpopulation. A simulation study shows that the proposed design reliably identifies a sensitive subpopulation, yields much higher generalized power compared to several existing enrichment designs and a conventional all-comers group sequential design, and isrobust.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.