Abstract

Bayesian geostatistical regression (GR) models estimate air pollution exposure at high spatial resolution, quantify the prediction uncertainty and provide probabilistic inference on the exceedance of air quality thresholds. However, due to high computational burden, previous GR models have provided gridded ambient nitrogen dioxide (NO2) concentrations at smaller areas of investigation. Here, we applied these models to estimate yearly averaged NO2 concentrations at 1 km2 spatial resolution across 44 European countries, integrating information from in situ monitoring stations, satellites and chemical transport model (CTM) simulations. The tropospheric values of NO2 derived from the ozone monitoring instrument (OMI) onboard the National Aeronautics and Space Administration’s (NASA’s) Aura satellite were converted to near ground NO2 concentration proxies using simulations from the 3-D global CTM (GEOS-Chem) at 0.5° × 0.625°spatial resolution and surface-to-column NO2 ratios. Simulations from the Ensemble of regional CTMs at spatial resolution of 0.1° × 0.1°were extracted from the Copernicus atmosphere monitoring service (CAMS). The contribution of these covariates to the predictive capability of geostatistical models was for the first time evaluated here through a rigorous model selection procedure along with additional continental high-resolution satellite-derived products, including novel data from the pan-European Copernicus land monitoring service (CLMS). The results have shown that the conversion of columnar NO2 values to surface quasi-observations yielded models with slightly better predictive ability and lower uncertainty. Nonetheless, the use of higher resolution CAMS-Ensemble simulations as covariates in GR models granted the most accurate surface NO2 estimates, showing that, in 2016, 16.17 (95% C.I. 6.34–29.96) million people in Europe, representing 2.97% (95% C.I. 1.16% - 5.50%) of the total population, were exposed to levels above the EU directive and WHO air quality guidelines threshold for NO2. Our estimates are readily available to policy makers and scientists assessing the burden of disease attributable to NO2 in 2016.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.