Abstract

BackgroundStreptococcosis is a major bacterial disease in Nile tilapia that is caused by Streptococcus agalactiae infection, and development of resistant strains of Nile tilapia represents a sustainable approach towards combating this disease. In this study, we performed a controlled disease trial on 120 full-sib families to (i) quantify and characterize the potential of genomic selection for survival to S. agalactiae infection in Nile tilapia, and (ii) identify the best genomic model and the optimal density of single nucleotide polymorphisms (SNPs) for this trait.MethodsIn total, 40 fish per family (15 fish intraperitoneally injected and 25 fish as cohabitants) were used in the challenge test. Mortalities were recorded every 3 h for 35 days. After quality control, genotypes (50,690 SNPs) and phenotypes (0 for dead and 1 for alive) for 2472 cohabitant fish were available. Genetic parameters were obtained using various genomic selection models (genomic best linear unbiased prediction (GBLUP), BayesB, BayesC, BayesR and BayesS) and a traditional pedigree-based model (PBLUP). The pedigree-based analysis used a deep 17-generation pedigree. Prediction accuracy and bias were evaluated using five replicates of tenfold cross-validation. The genomic models were further analyzed using 10 subsets of SNPs at different densities to explore the effect of pruning and SNP density on predictive accuracy.ResultsModerate estimates of heritabilities ranging from 0.15 ± 0.03 to 0.26 ± 0.05 were obtained with the different models. Compared to a pedigree-based model, GBLUP (using all the SNPs) increased prediction accuracy by 15.4%. Furthermore, use of the most appropriate Bayesian genomic selection model and SNP density increased the prediction accuracy up to 71%. The 40 to 50 SNPs with non-zero effects were consistent for all BayesB, BayesC and BayesS models with respect to marker id and/or marker locations.ConclusionsThese results demonstrate the potential of genomic selection for survival to S. agalactiae infection in Nile tilapia. Compared to the PBLUP and GBLUP models, Bayesian genomic models were found to boost the prediction accuracy significantly.

Highlights

  • Streptococcosis is a major bacterial disease in Nile tilapia that is caused by Streptococcus agalactiae infection, and development of resistant strains of Nile tilapia represents a sustainable approach towards combating this disease

  • Streptococcosis is a disease caused by the pathogens Streptococcus agalactiae and Streptococcus iniae and is considered one of the most significant bacterial diseases in Nile tilapia based on socio-economic impact and zoonotic potential [7]

  • Using Pedigree best linear unbiased prediction (PBLUP), the estimated heritability was 0.15 ± 0.02, which is similar to that reported by Sukhavachana et al [24] and slightly lower than the estimates reported by Number of single nucleotide polymorphisms (SNPs) Genomic BLUP (GBLUP)

Read more

Summary

Introduction

Streptococcosis is a major bacterial disease in Nile tilapia that is caused by Streptococcus agalactiae infection, and development of resistant strains of Nile tilapia represents a sustainable approach towards combating this disease. Joshi et al Genet Sel Evol (2021) 53:37 stocking densities and poorer water quality which, coupled with sub-optimal temperatures and mishandling of the fish and water, are a cause of stress on the animals throughout the growing period [5] Because of these conditions, farmed tilapia are more exposed to various bacterial, viral, fungal, and parasitic diseases than wild tilapia [6]. Streptococcosis is a disease caused by the pathogens Streptococcus agalactiae and Streptococcus iniae and is considered one of the most significant bacterial diseases in Nile tilapia based on socio-economic impact and zoonotic potential [7] Of these two Streptococcus species, S. agalactiae is the most prevalent [8] and causes significant morbidity and mortality [9], with mortality rates over 50% for acute infections [10]. Symptoms of Streptococcosis are lethargy, erratic swimming, hyper-pigmentation of the skin, exophthalmia with haemorrhagic eyes, splenomegaly, abdominal distension, and diffused haemorrhage in the operculum, around the mouth and anus, and at the base of the fins [12,13,14]

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call