Abstract

In the realm of road safety and the evolution toward automated driving, Advanced Driver Assistance and Automated Driving (ADAS/AD) systems play a pivotal role. As the complexity of these systems grows, comprehensive testing becomes imperative, with virtual test environments becoming crucial, especially for handling diverse and challenging scenarios. Radar sensors are integral to ADAS/AD units and are known for their robust performance even in adverse conditions. However, accurately modeling the radar's perception, particularly the radar cross-section (RCS), proves challenging. This paper adopts a data-driven approach, using Gaussian mixture models (GMMs) to model the radar's perception for various vehicles and aspect angles. A Bayesian variational approach automatically infers model complexity. The model is expanded into a comprehensive radar sensor model based on object lists, incorporating occlusion effects and RCS-based detectability decisions. The model's effectiveness is demonstrated through accurate reproduction of the RCS behavior and scatter point distribution. The full capabilities of the sensor model are demonstrated in different scenarios. The flexible and modular framework has proven apt for modeling specific aspects and allows for an easy model extension. Simultaneously, alongside model extension, more extensive validation is proposed to refine accuracy and broaden the model's applicability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.