Abstract

Functional analysis of variance (ANOVA) models partition a func- tional response according to the main efiects and interactions of various factors. This article develops a general framework for functional ANOVA modeling from a Bayesian viewpoint, assigning Gaussian process prior distributions to each batch of functional efiects. We discuss the choices to be made in specifying such a model, advocating the treatment of levels within a given factor as dependent but exchangeable quantities, and we suggest weakly informative prior distributions for higher level parameters that may be appropriate in many situations. We discuss computationally e-cient strategies for posterior sampling using Markov Chain Monte Carlo algorithms, and we emphasize useful graphical summaries based on the posterior distribution of model-based analogues of traditional ANOVA decom- positions of variance. We illustrate this process of model speciflcation, posterior sampling, and graphical posterior summaries in two examples. The flrst consid- ers the efiect of geographic region on the temperature proflles at weather stations in Canada. The second example examines sources of variability in the output of regional climate models from a designed experiment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.