Abstract
Seismic full-waveform inversion (FWI) uses full seismic records to estimate the subsurface velocity structure. This requires a highly nonlinear and nonunique inverse problem to be solved; therefore, Bayesian methods have been used to quantify uncertainties in the solution. Variational Bayesian inference uses optimization to efficiently provide solutions. However, previously the method has only been applied to a transmission FWI problem and with strong prior information imposed on the velocity such as is never available in practice. We have found that the method works well in a seismic reflection setting and with realistically weak prior information, representing the type of problem that occurs in reality. We conclude that the method can produce high-resolution images and reliable uncertainties using data from standard reflection seismic acquisition geometry, realistic nonlinearity, and practically achievable prior information.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.