Abstract
The Bayesian-frequentist hybrid model and associated inference can combine the advantages of both Bayesian and frequentist methods and avoid their limitations. However, except for few special cases in existing literature, the computation under the hybrid model is generally nontrivial or even unsolvable. This article develops a computation algorithm for hybrid inference under any general loss functions. Three simulation examples demonstrate that hybrid inference can improve upon frequentist inference by incorporating valuable prior information, and also improve Bayesian inference based on non-informative priors where the latter leads to biased estimates for the small sample sizes used in inference. The proposed method is illustrated in applications including a biomechanical engineering design and a surgical treatment of acral lentiginous melanoma.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.