Abstract
The existence of speckle noise in ultrasound (US) image processing distorts the image quality and also hinders the development of systematic approaches for US images. Numerous de-speckling schemes were established to date that concern speckle reduction; however, the models suffer from demerits like computational time, computational complexity, etc., that are to be rectified as soon as possible. This compulsion takes to the introduction of a new de-speckling model via an adaptive hybrid filter model that includes four filters like guided filter (GF), speckle-reducing bilateral filter (SRBF), rotation invariant bilateral nonlocal means filter (RIBNLM), and median filter (MF) respectively. Moreover, the novelty goes under the selection of optimal filter coefficients that make the process effective. Bayesian-based neural network is used to predict the appropriate filter coefficients, where the training library is constructed with the optimal coefficients. Along with this, the selection of optimal filter coefficients is done under the defined objective function using a new hybrid algorithm termed as Randomized FireFly (FF) update in Lion Algorithm (RFU-LA) that hybrids the concept of both LA and FF, respectively. Finally, the performance of the proposed de-speckling model is compared over that of other conventional models with respect to different performance measures. Accordingly, from the analysis, the mean MAPE of the proposed method are 39.13% and 49.28% higher than those of the wavelet filtering and hybrid filtering schemes for a noise variance of 0.1.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.