Abstract
In the framework of image remote sensing, Markov random fields are used to model the distribution of points both in the 2-dimensional geometrical layout of the image and in the spectral grid. The problems of image filtering and supervised classification are investigated. The mixture model of noise developed here and appropriate Gibbs densities yield a same approach and a same efficient ICM algorithm both for filtering and classifying.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.