Abstract

In multilevel models for binary responses, estimation is computationally challenging due to the need to evaluate intractable integrals. In this paper, we investigate the performance of integrated nested Laplace approximation (INLA), a fast deterministic method for Bayesian inference. In particular, we conduct an extensive simulation study to compare the results obtained with INLA to the results obtained with a traditional stochastic method for Bayesian inference (MCMC Gibbs sampling), and with maximum likelihood through adaptive quadrature. Particular attention is devoted to the case of small number of clusters. The specification of the prior distribution for the cluster variance plays a crucial role and it turns out to be more relevant than the choice of the estimation method. The simulations show that INLA has an excellent performance as it achieves good accuracy (similar to MCMC) with reduced computational times (similar to adaptive quadrature).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.