Abstract

In this paper, based on a new type of censoring scheme called a progressive first-failure censored, the maximum likelihood (ML) and the Bayes estimators for the two unknown parameters of the Generalized Pareto (GP) distribution are derived. This type of censoring contains as special cases various types of censoring schemes used in the literature. A Bayesian approach using Markov Chain Monte Carlo (MCMC) method to generate from the posterior distributions and in turn computing the Bayes estimators are developed. Point estimation and confidence intervals based on maximum likelihood and bootstrap methods are also proposed. The approximate Bayes estimators have been obtained under the assumptions of informative and non-informative priors. A numerical example is provided to illustrate the proposed methods. Finally, the maximum likelihood and different Bayes estimators are compared via a Monte Carlo simulation study.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.