Abstract
Parameters in time series and other dynamic models often show complex range restrictions and their distributions may deviate substantially from multivariate normal or other standard parametric distributions. We use the truncated Dirichlet process (DP) as a non-parametric prior for such dynamic parameters in a novel nonlinear Bayesian dynamic factor analysis model. This is equivalent to specifying the prior distribution to be a mixture distribution composed of an unknown number of discrete point masses (or clusters). The stick-breaking prior and the blocked Gibbs sampler are used to enable efficient simulation of posterior samples. Using a series of empirical and simulation examples, we illustrate the flexibility of the proposed approach in approximating distributions of very diverse shapes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: British Journal of Mathematical and Statistical Psychology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.