The pairwise maximum entropy model (MEM) for resting state functional MRI (rsfMRI) has been used to generate energy landscape of brain states and to explore nonlinear brain state dynamics. Researches using MEM, however, has mostly been restricted to fixed‐effect group‐level analyses, using concatenated time series across individuals, due to the need for large samples in the parameter estimation of MEM. To mitigate the small sample problem in analyzing energy landscapes for individuals, we propose a Bayesian estimation of individual MEM using variational Bayes approximation (BMEM). We evaluated the performances of BMEM with respect to sample sizes and prior information using simulation. BMEM showed advantages over conventional maximum likelihood estimation in reliably estimating model parameters for individuals with small sample data, particularly utilizing the empirical priors derived from group data. We then analyzed individual rsfMRI of the Human Connectome Project to show the usefulness of MEM in differentiating individuals and in exploring neural correlates for human behavior. MEM and its energy landscape properties showed high subject specificity comparable to that of functional connectivity. Canonical correlation analysis identified canonical variables for MEM highly associated with cognitive scores. Inter‐individual variations of cognitive scores were also reflected in energy landscape properties such as energies, occupation times, and basin sizes at local minima. We conclude that BMEM provides an efficient method to characterize dynamic properties of individuals using energy landscape analysis of individual brain states.

Full Text

Published Version
Open DOI Link

Get access to 115M+ research papers

Discover from 40M+ Open access, 2M+ Pre-prints, 9.5M Topics and 32K+ Journals.

Sign Up Now! It's FREE

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call