Abstract

In this paper, Bayesian estimation of log odds ratios overR × Cand 2 × 2 × Kcontingency tables is considered, which is practically reasonable in the presence of prior information. Likelihood functions for log odds ratios are derived for each table structure. A prior specification strategy is proposed. Posterior inferences are drawn using Gibbs sampling and Metropolis–Hastings algorithm. Two numerical examples are given to illustrate the matters argued.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.