Abstract
While most short-time discrete Fourier transform-based single-channel speech enhancement algorithms only modify the noisy spectral amplitude, in recent years the interest in phase processing has increased in the field. The goal of this paper is twofold. First, we derive Bayesian probability density functions and estimators for the clean speech phase when different amounts of prior knowledge about the speech and noise amplitudes is given. Second, we derive a joint Bayesian estimator of the clean speech amplitudes and phases, when uncertain a priori knowledge on the phase is available. Instrumental measures predict that by incorporating uncertain prior information of the phase, the quality and intelligibility of processed speech can be improved both over traditional phase insensitive approaches, and approaches that treat prior information on the phase as deterministic.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.