Abstract
Many sensors in chemical, biological, radiological, and nuclear (CBRN) applications only provide very coarse, integer outputs. For example, chemical detectors based on ion mobility sensing typically have a total of eight outputs in the form of bar readings. Non-Gaussian likelihood functions are involved in the modeling and data fusion of those sensors. Under the assumption that the prior distribution is a Gaussian density or can be approximated by a Gaussian density, two methods are presented for approximating the posterior mean and variance. The Gaussian sum method first approximates the non-Gaussian likelihood function by a mixture of Gaussian components and then uses the Kalman filter formulae to compute the posterior mean and variance. The Gaussian-Hermite method computes the posterior mean and variance through three integrals defined over infinite intervals and approximated by Gaussian-Hermite quadrature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Aerospace and Electronic Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.