Abstract

Meta-analysis has been widely applied to rare adverse event data because it is very difficult to reliably detect the effect of a treatment on such events in an individual clinical study. However, it is known that standard meta-analysis methods are often biased, especially when the background incidence rate is very low. A recent work by Bhaumik et al. proposed new moment-based approaches under a natural random effects model, to improve estimation and testing of the treatment effect and the between-study heterogeneity parameter. It has been demonstrated that for rare binary events, their methods have superior performance to commonly used meta-analysis methods. However, their comparison does not include any Bayesian methods, although Bayesian approaches are a natural and attractive choice under the random-effects model. In this article, we study a Bayesian hierarchical approach to estimation and testing in meta-analysis of rare binary events using the random effects model in Bhaumik et al. We develop Bayesian estimators of the treatment effect and the heterogeneity parameter, as well as hypothesis testing methods based on Bayesian model selection procedures. We compare them with the existing methods through simulation. A data example is provided to illustrate the Bayesian approach as well.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.