Abstract
This paper incorporates Bayesian estimation and optimization into a portfolio selection framework, particularly for high-dimensional portfolios in which the number of assets is larger than the number of observations. We leverage a constrained minimization approach, called the linear programming optimal (LPO) portfolio, to directly estimate effective parameters appearing in the optimal portfolio. We propose two refinements for the LPO strategy. First, we explore improved Bayesian estimates, instead of sample estimates, of the covariance matrix of asset returns. Second, we introduce Bayesian optimization (BO) to replace traditional grid-search cross-validation (CV) in tuning hyperparameters of the LPO strategy. We further propose modifications in the BO algorithm by (1) taking into account the time-dependent nature of financial problems and (2) extending the commonly used expected improvement acquisition function to include a tunable trade-off with the improvement’s variance. Allowing a general case of noisy observations, we theoretically derive the sublinear convergence rate of BO under the newly proposed EIVar and thus our algorithm has no regret. Our empirical studies confirm that the adjusted BO results in portfolios with higher out-of-sample Sharpe ratio, certainty equivalent, and lower turnover compared to those tuned with CV. This superior performance is achieved with a significant reduction in time elapsed, thus also addressing time-consuming issues of CV. Furthermore, LPO with Bayesian estimates outperforms the original proposal of LPO, as well as the benchmark equally weighted and plugin strategies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.