Abstract

This article studies the problem of statistical estimation and optimal censoring from three-parameter inverted generalized linear exponential distribution under progressive first failure censored samples. The maximum likelihood estimation is presented to estimate the unknown parameters. Approximate confidence interval is constructed to compute the interval estimation for the parameters and the delta method is used to compute the interval estimation for survival, hazard rate, and reversed hazard rate functions. The Gibbs sampler with the Metropolis-Hastings algorithm is applied to generate the Markov chain Monte Carlo samples from the posterior functions to approximate the Bayes estimation using several loss functions and to establish the symmetric credible interval for the parameters. A two real data sets are used to study the suggested censoring schemes and the optimal censoring is used to show the performance of the censoring schemes using maximum likelihood estimator and Bayes estimator. Also, a new vision is studied to obtain the optimal censoring using Bayes estimator under varying loss functions. Finally, a simulation study is presented to compare the different estimation methods based on mean square error and average absolute bias.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.