Abstract

Motivated by a study from cognitive psychology, we develop a Generalized Linear Model for circular data within the Bayesian framework, using the von Mises distribution. Although circular data arise in a wide variety of scientific fields, the number of methods for their analysis is limited. Our model allows inclusion of both continuous and categorical covariates. In a frequentist setting, this type of model is plagued by the likelihood surface of its regression coefficients, which is not logarithmically concave. In a Bayesian context, a weakly informative prior solves this issue, while for other parametersnoninformative priors are available. In addition to an MCMC sampling algorithm, we develop Bayesian hypothesis tests based on the Bayes factor for both equality and inequality constrained hypotheses. In a simulation study, it can be seen that our method performs well. The analyses are available in the package CircGLMBayes. Finally, we apply this model to a dataset from experimental psychology, and show that it provides valuable insight for applied researchers. Extensions to dependent observations are within reach by means of the multivariate von Mises distribution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.