Abstract
Idiographic network models are estimated on time series data of a single individual and allow researchers to investigate person-specific associations between multiple variables over time. The most common approach for fitting graphical vector autoregressive (GVAR) models uses least absolute shrinkage and selection operator (LASSO) regularization to estimate a contemporaneous and a temporal network. However, estimation of idiographic networks can be unstable in relatively small data sets typical for psychological research. This bears the risk of misinterpreting differences in estimated networks as spurious heterogeneity between individuals. As a remedy, we evaluate the performance of a Bayesian alternative for fitting GVAR models that allows for regularization of parameters while accounting for estimation uncertainty. We also develop a novel test, implemented in the tsnet package in R, which assesses whether differences between estimated networks are reliable based on matrix norms. We first compare Bayesian and LASSO approaches across a range of conditions in a simulation study. Overall, LASSO estimation performs well, while a Bayesian GVAR without edge selection may perform better when the true network is dense. In an additional simulation study, the novel test is conservative and shows good false-positive rates. Finally, we apply Bayesian estimation and testing in an empirical example using daily data on clinical symptoms for 40 individuals. We additionally provide functionality to estimate Bayesian GVAR models in Stan within tsnet. Overall, Bayesian GVAR modeling facilitates the assessment of estimation uncertainty which is important for studying interindividual differences of intraindividual dynamics. In doing so, the novel test serves as a safeguard against premature conclusions of heterogeneity. (PsycInfo Database Record (c) 2024 APA, all rights reserved).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.