Abstract

AbstractSince a system and its components usually deteriorate with age, preventive maintenance (PM) is often performed to restore or keep the function of a system in a good state. Furthermore, PM is capable of improving the health condition of the system and thus prolongs its effective age. There has been a vast amount of research to find optimal PM policies for deteriorating repairable systems. However, such decisions involve numerous uncertainties and the analyses are typically difficult to perform because of the scarcity of data. It is therefore important to make use of all information in an efficient way. In this article, a Bayesian decision model is developed to determine the optimal number of PM actions for systems which are maintained according to a periodic PM policy. A non‐homogeneous Poisson process with a power law failure intensity is used to describe the deteriorating behavior of the repairable system. It is assumed that the status of the system after a PM is somewhere between as good as new for a perfect repair and as good as old for a minimal repair, and for failures between two preventive maintenances, the system undergoes minimal repairs. Finally, a numerical example is given and the results of the proposed approach are discussed after performing sensitivity analysis. © 2007 Wiley Periodicals, Inc. Naval Research Logistics, 2008

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.