Abstract

This paper aims at proposing a robust and fast low rank matrix factorization model for multiple images denoising. To this end, a novel model, Bayesian deep matrix factorization network (BDMF), is presented, where a deep neural network (DNN) is designed to model the low rank components and the model is optimized via stochastic gradient variational Bayes. By the virtue of deep learning and Bayesian modeling, BDMF makes significant improvement on synthetic experiments and real-world tasks (including shadow removal and hyperspectral image denoising), compared with existing state-of-the-art models.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.