Abstract
We consider the Bayesian D-optimal design problem for exponential growth models with one, two or three parameters. For the one-parameter model conditions on the shape of the density of the prior distribution and on the range of its support are given guaranteeing that a one-point design is also Bayesian D-optimal within the class of all designs. In the case of two parameters the best two-point designs are determined and for special prior distributions it is proved that these designs are Bayesian D-optimal. Finally, the exponential growth model with three parameters is investigated. The best three-point designs are characterized by a nonlinear equation. The global optimality of these designs cannot be proved analytically and it is demonstrated that these designs are also Bayesian D-optimal within the class of all designs if gamma-distributions are used as prior distributions.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.