Abstract
ABSTRACT Gravitational-wave data analysis demands sophisticated statistical noise models in a bid to extract highly obscured signals from data. In Bayesian model comparison, we choose among a landscape of models by comparing their marginal likelihoods. However, this computation is numerically fraught and can be sensitive to arbitrary choices in the specification of parameter priors. In Bayesian cross validation, we characterize the fit and predictive power of a model by computing the Bayesian posterior of its parameters in a training data set, and then use that posterior to compute the averaged likelihood of a different testing data set. The resulting cross-validation scores are straightforward to compute; they are insensitive to prior tuning; and they penalize unnecessarily complex models that overfit the training data at the expense of predictive performance. In this article, we discuss cross validation in the context of pulsar-timing-array data analysis, and we exemplify its application to simulated pulsar data (where it successfully selects the correct spectral index of a stochastic gravitational-wave background), and to a pulsar data set from the NANOGrav 11-yr release (where it convincingly favours a model that represents a transient feature in the interstellar medium). We argue that cross validation offers a promising alternative to Bayesian model comparison, and we discuss its use for gravitational-wave detection, by selecting or refuting models that include a gravitational-wave component.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.