Abstract

Many remote sensing applications involve the classification of anomalous responses as either objects of interest or clutter. This paper addresses the problem of anomaly classification in hyperspectral imagery (HSI) and focuses on robustly detecting disturbed earth in the long-wave infrared (LWIR) spectrum. Although disturbed earth yields a distinct LWIR signature that distinguishes it from the background, its distribution relative to clutter may vary over different environmental contexts. In this paper, a generic Bayesian framework is proposed for training context-dependent classification rules from wide-area airborne LWIR imagery. The proposed framework combines sparse classification models with either supervised or discriminative context identification to pool information across contexts and improve classification overall. Experiments are performed with data from a LWIR landmine detection system. Contexts are learned from endmember abundances extracted from the background near each detected anomaly. Classification performance is compared with single-classifier approaches using the same information as well as other baseline anomaly detectors from the literature. Results indicate that utilizing context for classifying anomalies in HSI could lead to more robust performance over varying terrain.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.