Abstract
This article studies the construction of a Bayesian confidence interval for the ratio of marginal probabilities in matched-pair designs. Under a Dirichlet prior distribution, the exact posterior distribution of the ratio is derived. The tail confidence interval and the highest posterior density (HPD) interval are studied, and their frequentist performances are investigated by simulation in terms of mean coverage probability and mean expected length of the interval. An advantage of Bayesian confidence interval is that it is always well defined for any data structure and has shorter mean expected width. We also find that the Bayesian tail interval at Jeffreys prior performs as well as or better than the frequentist confidence intervals.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.