Abstract
This paper deals with the implementation of sub Nyquist sampling for the efficient wideband spectrum sensing in cognitive radio network. Cognitive radio is a very promising technology in the field of wireless communication which has drastically changed the spectral dynamics through the opportunistic utilization of frequency band by the secondary users when it is not utilized by the primary users. The complexity of spectral detection strategy is reduced using the compressive sensing method. Bayesian technique is utilized in the compressive sampling to deal with uncertainty of the process and increase the speed of detection. This technique recovers the wideband signals even with few measurements via Laplace prior and Toeplitz matrix. Sparse signal recovery algorithm is used for the extraction of primary user frequency location. The condition of the detection of primary user even in the low regulated transmission from unlicensed user is been resolved in this paper through Wavelet transform. This approach enables the evaluation of all possible hypotheses simultaneously in the global optimization framework. Simulation analysis is performed to verify the effectiveness of the proposed technique over the cognitive radio network.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Recent Technology and Engineering (IJRTE)
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.