Abstract

Functional microcircuits model the coordinated activity of neurons and play an important role in physiological computation and behaviors. Most existing methods to learn microcircuit structures are correlation-based and often generate dense microcircuits that cannot distinguish between direct and indirect association. We treat microcircuit structure learning as a Markov blanket discovery problem and propose Bayesian Coherence Analysis (BCA) which utilizes a Bayesian network architecture called Bayesian network with inverse-tree structure to efficiently and effectively detect Markov blankets for high-dimensional neural activity data. BCA achieved balanced sensitivity and specificity on simulated data. For the real-world anterior lateral motor cortex study, BCA identified microcircuit subtypes that predicted trial types with an accuracy of 0.92. BCA is a powerful method for microcircuit structure learning.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.