Abstract

Fault diagnosis includes the main task of classification. Bayesian networks (BNs) present several advantages in the classification task, and previous works have suggested their use as classifiers. Because a classifier is often only one part of a larger decision process, this article proposes, for industrial process diagnosis, the use of a Bayesian method called dynamic Markov blanket classifier that has as its main goal the induction of accurate Bayesian classifiers having dependable probability estimates and revealing actual relationships among the most relevant variables. In addition, a new method, named variable ordering multiple offspring sampling capable of inducing a BN to be used as a classifier, is presented. The performance of these methods is assessed on the data of a benchmark problem known as the Tennessee Eastman process. The obtained results are compared with naive Bayes and tree augmented network classifiers, and confirm that both proposed algorithms can provide good classification accuracies as well as knowledge about relevant variables.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.