Abstract
We investigate a computer model calibration technique inspired by the well-known Bayesian framework of Kennedy and O'Hagan (KOH). We tackle the full Bayesian formulation where model parameter and model discrepancy hyperparameters are estimated jointly and reduce the problem dimensionality by introducing a functional relationship that we call the full maximum a posteriori (FMP) method. This method also eliminates the need for a true value of model parameters that caused identifiability issues in the KOH formulation. When the joint posterior is approximated as a mixture of Gaussians, the FMP calibration is proven to avoid some pitfalls of the KOH calibration, namely missing some probability regions and underestimating the posterior variance. We then illustrate two numerical examples where both model error and measurement uncertainty are estimated together. Using the solution to the full Bayesian problem as a reference, we show that the FMP results are accurate and robust, and avoid the need for high-dimensional Markov chains for sampling.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal for Uncertainty Quantification
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.