Abstract
Summaryp‐Values are commonly transformed to lower bounds on Bayes factors, so‐called minimum Bayes factors. For the linear model, a sample‐size adjusted minimum Bayes factor over the class of g‐priors on the regression coefficients has recently been proposed (Held & Ott, The American Statistician 70(4), 335–341, 2016). Here, we extend this methodology to a logistic regression to obtain a sample‐size adjusted minimum Bayes factor for 2 × 2 contingency tables. We then study the relationship between this minimum Bayes factor and two‐sided p‐values from Fisher's exact test, as well as less conservative alternatives, with a novel parametric regression approach. It turns out that for all p‐values considered, the maximal evidence against the point null hypothesis is inversely related to the sample size. The same qualitative relationship is observed for minimum Bayes factors over the more general class of symmetric prior distributions. For the p‐values from Fisher's exact test, the minimum Bayes factors do on average not tend to the large‐sample bound as the sample size becomes large, but for the less conservative alternatives, the large‐sample behaviour is as expected.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.