Abstract

Developing reliable interatomic potential models with quantified predictive accuracy is crucial for atomistic simulations. Commonly used potentials, such as those constructed through the embedded atom method (EAM), are derived from semi-empirical considerations and contain unknown parameters that must be fitted based on training data. In the present work, we investigate Bayesian calibration as a means of fitting EAM potentials for binary alloys. The Bayesian setting naturally assimilates probabilistic assertions about uncertain quantities. In this way, uncertainties about model parameters and model errors can be updated by conditioning on the training data and then carried through to prediction. We apply these techniques to investigate an EAM potential for a family of gold–copper systems in which the training data correspond to density-functional theory values for lattice parameters, mixing enthalpies, and various elastic constants. Through the use of predictive distributions, we demonstrate the limitations of the potential and highlight the importance of statistical formulations for model error.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.