Abstract

The calibration of continuum damage mechanics (CDM) models is often performed by least-squares regression through the design of specifically crafted experiments to identify a deterministic solution of model parameters minimizing the squared error between the model prediction and the corresponding experimental result. Specifically, this work demonstrates a successful application of Bayesian inference for the simultaneous estimation of eleven material parameters of a viscous multimode CDM model conditioned upon a small inhomogeneous multiaxial experimental dataset. The stochastic treatment of CDM model parameters provides uncertainty estimates, enables the propagation of uncertainty into further analyses, and provides for principled decision making regarding informative subsequent experimental tests of value. The methodology presented in this work is also broadly applicable to various mechanical models with high-dimensional parameter sets.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.