Abstract
Drought is one of the most damaging but least understood environmental disasters. The time-varying multivariate drought risk and its dynamics have remained unresolved in a changing environment. To this end, a Bayesian framework with time in its location parameter as a covariate was introduced in this study to conduct time-varying distributions of duration and severity. Besides, the joint distribution of precipitation and runoff was developed by bivariate non-parameter density kernel estimation for multivariate drought index NKMSDI (Nonparametric Kernel Multivariate Standardized Drought Index) and Expected Waiting Time (EWT)-based return period was used to estimate drought risk. Finally, the time-varying risk trends were explored and verified via correlations between drought risk and Normalized Difference Vegetation Index series. Results indicate that: (1) bivariate return period is more accurate than univariate return period for drought risk assessment and return periods under non-stationary assumption are more reasonable than those under stationary assumption; (2) the multivariate drought risks present obviously increasing trends and the western basin shows the highest increasing rate; and (3) the increasing drought risks exhibit strong association with sunspot activities and local vegetation dynamics. In general, this study provides new insights into drought risk and its dynamics under the time-varying drought properties condition, which is highly important for robust and effective management practices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.