Abstract
Recent progress in autoencoder-based sparse identification of nonlinear dynamics (SINDy) underℓ1constraints allows joint discoveries of governing equations and latent coordinate systems from spatio-temporal data, including simulated video frames. However, it is challenging forℓ1-based sparse inference to perform correct identification for real data due to the noisy measurements and often limited sample sizes. To address the data-driven discovery of physics in the low-data and high-noise regimes, we propose Bayesian SINDy autoencoders, which incorporate a hierarchical Bayesian Spike-and-slab Gaussian Lasso prior. Bayesian SINDy autoencoder enables the joint discovery of governing equations and coordinate systems with uncertainty estimate. To resolve the challenging computational tractability of the Bayesian hierarchical setting, we adapt an adaptive empirical Bayesian method with Stochastic Gradient Langevin Dynamics (SGLD) which gives a computationally tractable way of Bayesian posterior sampling within our framework. Bayesian SINDy autoencoder achieves better physics discovery with lower data and fewer training epochs, along with valid uncertainty quantification suggested by the experimental studies. The Bayesian SINDy autoencoder can be applied to real video data, withaccurate physics discovery which correctly identifies the governing equation and provides a close estimate for standard physics constants like gravityg, for example, in videos of a pendulum.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.