Abstract

AbstractWe can face with the pattern recognition problems where the influence of hidden context leads to more or less radical changes in the target concept. This paper proposes the mathematical and algorithmic framework for the concept drift in the pattern recognition problems. The probabilistic basis described in this paper is based on the Bayesian approach to the estimation of decision rule parameters. The pattern recognition procedure derived from this approach uses the general principle of the dynamic programming and has linear computational complexity in contrast to polynomial computational complexity in general kind of pattern recognition procedure.KeywordsBayesian ApproachConcept DriftTarget ConceptPattern Recognition ProblemBellman FunctionThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.