Abstract
In this paper, we propose a new software reliability growth model which is the mixture of two exponential reliability growth models, one of which has the reliability growth and the other one does not have the reliability growth after the software is released upon completion of testing phase. The mixture of two such models is characterized by a weighted factor p, which is the proportion of reliability growth part within the model. Firstly, this paper discusses an optimal software release problem with regard to the expected total software cost incurred during the warranty period under the proposed software reliability growth model, which generalizes Kimura, Toyota and Yamada's (1999) model with consideration of the weighted factor. The second main purpose of this paper is to apply the Bayesian approach to the optimal software release policy by assuming the prior distributions for the unknown parameters contained in the proposed software reliability growth model. Some numerical examples are presented for the purpose of comparing the optimal software release policies depending on the choice of parameters by the non-Bayesian and Bayesian methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.