Abstract

In algorithms for tracking and sensor data fusion the targets to be observed are usually considered as point source objects; i.e., compared with the sensor resolution their extension is neglected. Due to the increasing resolution capabilities of modern sensors, however, this assumption is often no longer valid as different scattering centers of an object can cause distinct detections when passing the signal processing chain. Examples of extended targets are found in short-range applications (littoral surveillance, autonomous weapons, or robotics). A collectively moving target group can also be considered as an extended target. This point of view is the more appropriate, the smaller the mutual distances between the individual targets are. Due to the resulting data association and resolution conflicts any attempt of tracking the individual objects within the group seems to be no longer reasonable. With simulated sensor data produced by a partly unresolvable aircraft formation the addressed phenomena are illustrated and an approximate Bayesian solution to the resulting tracking problem is proposed. Ellipsoidal object extensions are modeled by random matrices, which are treated as additional state variables to be estimated or tracked. We expect that the resulting tracking algorithms are also relevant for tracking large, collectively moving target swarms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.