Abstract

Drinking water distribution system models have been increasingly utilized in the development and implementation of contaminant warning systems. This study proposes a Bayesian approach for probabilistic contamination source identification using a beta-binomial conjugate pair framework to identify contaminant source locations and times and compares the performance of this algorithm to previous work based on a Bayes’ rule approach. The proposed algorithm is capable of directly assigning a probability to a potential source location and updating the probability through the use of a backtracking algorithm and Bayesian statistics. The evaluation of the performance associated with the two algorithms was conducted by a simple comparison, as well as a simulation study in terms of a conservative chemical intrusion event through both a small skeletonized network and a large all-pipe distribution system network. Results from the simple comparison showed that the beta-binomial approach was more responsive to changes in sensor signals. In terms of intrusion events, the beta-binomial approach was more selective than the Bayes’ rule approach in identifying potential source node–time pairs and provided the flexibility to account for multiple possible injection locations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call