Abstract
Change point models are often used to model longitudinal data. To estimate the change point, Bayesian (Biometrika 62 (1975) 407; Appl. Statist. 41 (1992) 389; Biometrics 51 (1995) 236) or profile likelihood (Statist. Med. 19 (2000) 1555) methods may be used. We compare and contrast the two methods in analyzing longitudinal cognitive data from the Bronx Aging Study. The Bayesian method has advantages over the profile likelihood method in that it does not require all subjects to have the same change point. Caution must be taken regarding sensitivity to choice of prior distribution, identifiability, and goodness of fit. Analyses show that decline in memory precedes diagnosis of dementia by 7.5–8 years, and individual change points are not needed to model heterogeneity across subjects.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.