Abstract

ABSTRACT Mazucheli et al. introduced a new transformed model referred as the unit-Weibull (UW) distribution with uni- and anti-unimodal, decreasing and increasing shaped density along with bathtub shaped, constant and non-decreasing hazard rates. Here we consider inference upon stress and strength reliability using different statistical procedures. Under the framework that stress–strength components follow UW distributions with a known shape, we first estimate multicomponent system reliability by using four different frequentist methods. Besides, asymptotic confidence intervals (CIs) and two bootstrap CIs are obtained. Inference results for the reliability are further derived from Bayesian context when shape parameter is known or unknown. Unbiased estimation has also been considered when common shape is known. Numerical comparisons are presented using Monte Carlo simulations and in consequence, an illustrative discussion is provided. Two numerical examples are also presented in support of this study. Significant conclusion: We have investigated inference upon a stress–strength parameter for UW distribution. The four frequentist methods of estimation along with Bayesian procedures have been used to estimate the system reliability with common parameter being known or unknown.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.