Abstract

ABSTRACTThis article proposes a new approach for Bayesian and maximum likelihood parameter estimation for stationary Gaussian processes observed on a large lattice with missing values. We propose a Markov chain Monte Carlo approach for Bayesian inference, and a Monte Carlo expectation-maximization algorithm for maximum likelihood inference. Our approach uses data augmentation and circulant embedding of the covariance matrix, and provides likelihood-based inference for the parameters and the missing data. Using simulated data and an application to satellite sea surface temperatures in the Pacific Ocean, we show that our method provides accurate inference on lattices of sizes up to 512 × 512, and is competitive with two popular methods: composite likelihood and spectral approximations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.