Abstract

In practice, a disease process might involve three ordinal diagnostic stages: the normal healthy stage, the early stage of the disease, and the stage of full development of the disease. Early detection is critical for some diseases since it often means an optimal time window for therapeutic treatments of the diseases. In this study, we propose a new influence function-based empirical likelihood method and Bayesian empirical likelihood methods to construct confidence/credible intervals for the sensitivity of a test to patients in the early diseased stage given a specificity and a sensitivity of the test to patients in the fully diseased stage. Numerical studies are performed to compare the finite sample performances of the proposed approaches with existing methods. The proposed methods are shown to outperform existing methods in terms of coverage probability. A real dataset from the Alzheimer's Disease Neuroimaging Initiative (ANDI) is used to illustrate the proposedmethods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.