Abstract
Bayesian and frequentist approaches to statistical modelling in epidemiology are often pitted against each other as if they represented diametrically opposing philosophies. However, both approaches have a role to play in clinical epidemiology and the evaluation of clinical practice. Here I present an overview of the philosophical underpinnings of the Bayesian and frequentist approaches, showing that each model has its place depending on the philosophical and evaluative needs of the user. If the user's approach to a clinical problem places an emphasis on identifying causal relationships, a frequentist approach might be best suited. On the other hand, if the user takes an approach in which estimating a priori probabilities is appropriate, a Bayesian approach might be more appropriate. One could imagine both approaches used for the same study. Bayesian and frequentist approaches are complementary tools in the clinical evaluator's toolkit.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.