Abstract
A large sample approximation of the posterior distribution of partially identified structural parameters is derived for models that can be indexed by a finite-dimensional reduced form parameter vector. It is used to analyze the dierences between frequentist confidence sets and Bayesian credible sets in partially identified models. A key dierence is that frequentist set estimates extend beyond the boundaries of the identified set (conditional on the estimated reduced form parameter), whereas Bayesian credible sets can asymptotically be located in the interior of the identified set. Our asymptotic approximations are illustrated in the context of simple moment inequality models and a numerical illustration for a two-player entry game is provided.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.